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Abstract

Partial differential equations (PDEs) for the forced vibration of structural beams are solved in this paper
using the recently proposed generalized differential quadrature rule (GDQR). The GDQR techniques are
first applied to both spatial and time dimensions simultaneously as a whole. No other classical methods are
needed in the time dimension. The objective of this paper is to formularize the GDQR expressions and
corresponding explicit weighting coefficients, while the derivation of explicit weighting coefficients is one of
the most important aspects in the differential quadrature methods. It should be emphasized that the GDQR
expressions and weighting coefficients for two-dimensional problems are not a direct application of those
for one-dimensional problems, and they are distinctly different for PDEs of different orders. An Euler
beam and a Timoshenko beam are employed as examples. Accurate results are obtained. The proposed
procedures can be applied to problems in other disciplines of sciences and technology, where the problems
may be governed by other PDEs with different orders in the time or spatial dimension.
r 2002 Published by Elsevier Science Ltd.

1. Introduction

The differential quadrature method (DQM) was proposed in early 1970s in order to solve
partial, i.e., initial–boundary value, differential equations [1,2]. The DQM is usually applied
only in the spatial dimension. Classical methods, such as Runge–Kutta methods, are used in
the time dimension. The DQM has never been implemented in the time dimension of PDEs
when the temporal order is second order or higher. It seems that Tomasiello [3] has coped with
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initial–boundary-value problems for the forced vibration of Euler beams. However, he did not
implement the DQM in the time dimension. The present authors have proposed the generalized
differential quadrature rule (GDQR) to deal with initial�value ordinary differential equations
(ODEs) of second through fourth orders [4,5] and boundary-value problems of fourth�, sixth�,
and eighth orders [6–9] in solid mechanics and of third and sixth orders in fluid mechanics [10].
The authors have also applied the conventional DQM to the problems with their boundary
conditions specified at three and four distinct points [11]. Partial differential equations for
classical rectangular plates are of fourth order in both spatial dimensions [7]. The PDEs for the
forced vibration of some structural beams are of second order in the time dimension and of fourth
order in the spatial dimension. It should be emphasized that the GDQR expressions for
differential equations of different orders are distinctly different. The objective of this paper is to
extend the GDQR to a new application of initial–boundary-value problems and to derive
corresponding explicit weighting coefficients, while the derivation of explicit weighting coefficients
is one of the most important aspects for an accurate implementation of the DQMs. The explicit
weighting coefficients in the conventional DQM have been obtained using the Lagrange
interpolation functions in Refs. [12–16].

The forced vibration of some structural beams is solved here in a completely original way by
applying the GDQR to both time and spatial dimensions simultaneously as a whole. The GDQR
expressions and corresponding explicit weighting coefficients have been derived for the first time.
The GDQR can obtain very accurate results using only a few sampling points. An Euler beam and
a Timoshenko beam are used as examples. Accurate results are obtained. In other disciplines of
sciences and technology, there are enormous other high�order initial–boundary�value problems
with different orders in the time or spatial dimension, which could be dealt with according to the
procedures proposed here and in paper [7]. It is quite evident that the GDQR expressions and
weighting coefficients for two-dimensional problems are not a direct application of those for one-
dimensional problems.

2. Reference problems

The governing equation for the forced vibration of an Euler beam is expressed as [17]

EI
@4y

@x4
þ r

@2y

@t2
¼ Q sin

px

L
sin pt; ð1Þ

where EI ¼ 4:7726� 107 is the stiffness coefficient, r ¼ 420 the mass density per unit length,
Q ¼ 107 the maximum force, L ¼ 10 the beam length, and p ¼ 2p=0:28335 the frequency of the
dynamic force.

Both the spatial domain [0, L] and time domain [0, T] are transformed to [0, 1], using X ¼ x=L
and t ¼ t=T : Eq. (1) is then non-dimensionlized as

EI

L4

@4y

@X 4
þ

r
T2

@2y

@t2
¼ Q sin pX sin pTt: ð2Þ

If the beam is simply supported at both ends, the boundary conditions are:

y ¼ 0; @2y=@2X ¼ 0 ðX ¼ 0; 1; tZ0Þ: ð3Þ
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The initial conditions are as follows:

y ¼ 0; @y=@t ¼ 0 ðt ¼ 0Þ: ð4Þ

The analytic solutions for the displacement and bending moment are obtained as [17]

y ¼
Q

r
sin

px

L

� �sinpt � p=o
� �

sinot

o2 � p2
ð5Þ

M ¼ EI
@2y

@x2
¼ �

QEIp2

rL2
sin

px

L

� �sinpt � p=o
� �

sinot

o2 � p2
; ð6Þ

where

o ¼ p2

ffiffiffiffiffiffiffiffi
EI

rL4

s
: ð7Þ

Eq. (2) does not contain terms of mixed derivatives, while PDEs for classical rectangular plates
do [7]. The difference between the conventional DQM and the proposed GDQR is manifested in
the differential quadrature expressions for mixed derivatives. To illustrate the application of a
complete version of the GDQR to initial-boundary–value problems, a Timoshenko beam with a
mixed derivative term is used as the other example. The PDE for a Timoshenko beam considering
the effect of rotary inertia or shear deformation can be expressed as [17]

EI

L4

@4y

@X 4
þ

r
T2

@2y

@t2
�

zr
T2L2

@4y

@X 2@t2
¼ Q sin pX sin pTt; ð8Þ

where z is a constant related to the effect of rotary inertia or shear deformation. The
corresponding frequency is [17]

o ¼ p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

rL4 1þ zp2ð Þ

s
: ð9Þ

If the boundary and initial conditions also adopt Eqs. (3) and (4), its corresponding analytical
solutions are written as

y ¼
Q

r 1þ zp2ð Þ
sin

px

L

� �sinpt � p=o
� �

sinot

o2 � p2
: ð10Þ

M ¼ EI
@2y

@x2
¼ �

QEIp2

rL2 1þ zp2ð Þ
sin

px

L

� �sinpt � p=o
� �

sinot

o2 � p2
: ð11Þ

The data in the later numerical analysis are as follows:

T ¼ 0:25; z ¼ 0:3=p2 ð12Þ

3. Formulation

The GDQR expressions and weighting coefficients for PDEs will be constructed with the help
of those for ODEs. The conventional DQM’s expression for ODEs is written as, if the Lagrange
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interpolation shape functions ljðxÞ are used as trial functions

dry

dxr

����
x¼xi

¼
XN

j¼1

A
rð Þ

ij yj ¼
XN

j¼1

l
rð Þ

j xið Þyj ði ¼ 1; 2;y; NÞ; ð13Þ

where N is the number of all the discrete sampling points. A
ðrÞ
ij are the weighting coefficients of the

rth order derivative of the function yðxÞ associated with points xi: l
rð Þ

j xið Þ is the rth order
derivative, and A

rð Þ
ij ¼ l

rð Þ
j xið Þ were obtained in Refs. [12–16].

The GDQR expression for a two�point boundary�value fourth order ODE is expressed as
[6,7]

dry

dxr

����
x¼xi

¼
XNþ2

j¼1

E
rð Þ

ij Wj ¼
XNþ2

j¼1

h
rð Þ

j xið ÞWj ði ¼ 1; 2;y; NÞ; ð14Þ

where Wf gT¼ y
1ð Þ
1 ; y1; y2; y3;y; yN�1; yN ; y

1ð Þ
N

n o
: hj xð Þ are the corresponding Hermite–Fej!er

interpolation functions. E
ðrÞ
ij are the GDQR’s weighting coefficients of the rth order derivative of

the function yðxÞ at point xi; and E
rð Þ

ij ¼ h
rð Þ

j xið Þ have been applied to Euler beam analysis in Refs.
[6,7].

The GDQR expression for an initial�value second order ODE is expressed as [4,5]

dry

dtr

����
t¼ti

¼
XNþ1

j¼1

F
rð Þ

ij Qj ¼
XNþ1

j¼1

p
rð Þ

j tið ÞQj ðt ¼ 1; 2;yNÞ; ð15Þ

where Qf gT¼ y1; y2;y; yN ; y
1ð Þ

N

n o
: pj xð Þ are the corresponding Hermite–Fej!er interpolation

functions. F
ðrÞ
ij are the GDQR’s weighting coefficients of the rth order derivative of the function

yðxÞ at point ti; and F
rð Þ

ij ¼ p
rð Þ

j tið Þ have been applied to one�degree�of�freedom dynamic
problems in Refs. [4,5], for example, Duffing equations. Note that the notations for both pj tð Þ and
F

ðrÞ
ij are different from those in Refs. [4,5] in order to avoid confusion between Eqs. (14) and (15).

It should be noted that the inverse node numbering is used in the initial value problems for a
programming convenience. It means that yN and y

1ð Þ
N are initial conditions [4,5].

The Hermite–Fej!er interpolation functions hj xð Þ and pj tð Þ; and notations for weighting
coefficients E

ðrÞ
ij and F

ðrÞ
ij for ODEs will be employed in these serial numbers to derive the

corresponding weighting coefficients for initial–boundary�value PDEs. The construction
procedures are similar to those for rectangular plate problems [7] and are described below in
detail for the clarity of this paper.

The key point for choosing independent variables for PDEs is that the number of independent
variables at a point is equal to the number of equations/conditions to be satisfied at the same
point. Eqs. (2) and (8) are similar in the eye of the GDQR, since both of them are of second order
in the time dimension and of fourth order in the spatial dimension. Both the spatial and time
dimensions are discretized simultaneously in Fig. 1. Next, the independent variables for each point
are chosen according to the GDQR’s definitions, as shown in Table 1(a). At the spatial dimension
ends, both the function value and its first order derivative are used as independent variables at the
two ends, as was done for one-dimensional beam problems in Refs. [6,7]. At two temporal
dimension ends, initial displacement and velocity are used as independent variables at the initial
point, and only displacement is employed as a independent variable at the time end point where
only governing equation needs satisfying. The symbol Uij in Table 1(a) is used as the replacement
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of independent variables just for convenient formulations. The Hermite-Fej!er interpolation
functions for each independent variable are shown in Table 1(b). The properties of the Hermite–
Fej!er interpolation functions can be easily verified. Therefore, the interpolation expression of the
displacement function are summarized as

y X ; tð Þ ¼
XNt

k¼1

XNxþ1

m¼2

pk tð Þhm Xð Þ 	 Umk þ
XNt

k¼1

lk tð Þ h1 Xð ÞU1k þ hNxþ2 Xð Þ 	 U Nxþ2ð Þk
� �

þ
XNx

k¼1

lk Xð Þp Ntþ1ð Þ tð Þ 	 U kþ1ð Þ Ntþ1ð Þ: ð16Þ
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Fig. 1. The GDQR’s grids for both the spatial and time domains.

Table 1

(a) The independent variables, and (b) interpolation shape functions, which have a one-to-one correspondence with

each other for the forced vibration of beams

(a) The independent variables

@yNx1=@X ¼ U Nxþ2ð Þ1 @yNx2=@X ¼ U Nxþ2ð Þ2 y @yNxNt=@X ¼ U Nxþ2ð ÞNt Nil

yNx1 ¼ U Nxþ1ð Þ1 yNx2 ¼ U Nxþ1ð Þ2 y yNxNt ¼ U Nxþ1ð ÞNt @yNxNt=@t ¼ U Nxþ1ð Þ Ntþ1ð Þ

y y y y y

y21 ¼ U31 y22 ¼ U32 y y2Nt ¼ U3Nt @y2Nt=@t ¼ U3 Ntþ1ð Þ

y11 ¼ U21 y12 ¼ U22 y y1Nt ¼ U2Nt @y1Nt=@t ¼ U2 Ntþ1ð Þ

@y11=@X ¼ U11 @y12=@X ¼ U12 y @y1Nt=@X ¼ U1Nt Nil

(b) The interpolation shape functions

l1 tð ÞhNxþ2 Xð Þ l2 tð ÞhNxþ2 Xð Þ y lNt tð ÞhNxþ2 Xð Þ Nil

p1 tð ÞhNxþ1 Xð Þ p2 tð ÞhNxþ1 Xð Þ y pNt tð ÞhNxþ1 Xð Þ p Ntþ1ð Þ tð ÞlNx
Xð Þ

y y y y y

p1 tð Þh3 Xð Þ p2 tð Þh3 Xð Þ y pNt tð Þh3 Xð Þ p Ntþ1ð Þ tð Þl2 Xð Þ
p1 tð Þh2 Xð Þ p2 tð Þh2 Xð Þ y pNt tð Þh2 Xð Þ p Ntþ1ð Þ tð Þl1 Xð Þ
l1 tð Þh1 Xð Þ l2 tð Þh1 Xð Þ y lNt tð Þh1 Xð Þ Nil
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Using Eq. (16), the GDQR’s expression for the rth order X�partial derivative at points X=Xi

along any line t ¼ tj parallel to the X�axis may be written as

@ry

@X r

����
X¼Xi;t¼tj

¼
XNxþ2

k¼1

E
rð Þ

ik Ukj ð17Þ

for the sth order t�partial derivative at points t ¼ tj along any line X=Xi parallel to the t�axis
may be written as

@sy

@ts

����
X¼Xi ;t¼tj

¼
XNtþ1

k¼1

F
sð Þ

jk Uik: ð18Þ

The GDQR’s expression for a mixed derivative at point (Xi, tj) is in the form of

@ rþsð Þy

@rX@st

����
X¼Xi ;t¼tj

¼
XNt

k¼1

XNxþ1

m¼2

F
sð Þ

jk E
rð Þ

imUmk

þ
XNt

k¼1

A
sð Þ

jk E
rð Þ

i1 U1k þ E
rð Þ

i Nxþ2ð ÞU Nxþ2ð Þk

� �

þ
XNx

k¼1

A
rð Þ

ik F
sð Þ

j Ntþ1ð ÞU kþ1ð Þ Ntþ1ð Þ: ð19Þ

Eqs. (17)–(19) show clearly that the GDQR expressions are derived from the interpolation
function of Eq. (16), as done for the classical rectangular plate problems [7]. However, The
difference between PDEs of different orders is manifested in the differential quadrature
expressions for mixed derivatives. This means that both the GDQR expressions and weighting
coefficients are quite different.

Using the equations derived, governing equation (8) is discretized as

EI

L4

PNxþ2
k¼1 E

ð4Þ
ik Ukj þ

r
T2

PNtþ1
k¼1 F

ð2Þ
jk Uik �

zr
T2L2PNt

k¼1

PNxþ1
m¼2 F

ð2Þ
jk E

ð2Þ
im Umk þ

PNt
k¼1 A2

jk E
ð2Þ
i1 U1k þ E

ð2Þ
iðNxþ2ÞUðNxþ2Þk

� �h
þ
PNx

k¼1 A
ð2Þ
ik F

ð2Þ
jðNtþ1ÞUðkþ1ÞðNtþ1Þ

i
¼ Qsin pXisin pTtj

ði ¼ 3;y;Nx; j ¼ 1; 2;y;Nt � 1Þ:

ð20Þ

Boundary Eq. (3) can be transformed to

Uij ¼ 0;
XNxþ2

k¼1

E
2ð Þ

ik Ukj ¼ 0 ðj ¼ 1; 2;y;NtÞ: ð21Þ

Initial condition equation (4) may be written as

UiNt ¼ 0;Uj Ntþ1ð Þ ¼ 0 ði ¼ 1; 2;y;Nx þ 2; j ¼ 2; 3;y;Nx þ 1Þ: ð22Þ

The formed algebraic equations from (20)–(22) can be solved to obtain the required
independent variables. Using Eq. (17), the bending moment at any point can be obtained. The
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velocity and acceleration are calculated using Eq. (18). If z is taken as zero in Eq. (20), the results
for the Euler problem can be obtained.

4. Results and discussion

Chebyshev–Gauss–Lobatto sampling points are employed in this work. Using only seven points
in the spatial domain and thirteen points in the time domain, the GDQR’s relative errors for the
Euler beam are shown in Tables 2 and 3, and those for the Timoshenko beam in Tables 4 and 5.
Only the results in half of the spatial domain are shown due to its symmetric nature. It is seen that
the GDQR results are very accurate. It is clearly shown from this work that the DQ techniques
can directly transform PDEs to discrete algebraic equations. No classical methods, such as
Runge–Kutta methods, are needed in any dimension. This is an apparent advantage for the DQ
techniques. The procedures here can be applied to the forced vibration of circular plates if the time
dimension is added in Refs. [18,19], since their governing equations can all be expressed as the
PDEs with the fourth order in spatial dimension and the second order in temporal dimension. As
compared with the FDM, the accuracy of the GDQR is greatly manifested in Ref. [20].

The GDQR is demonstrated here to solve high order PDEs without using the three
conventional techniques such as building the boundary conditions into weighting coefficients,
dropping equations at points closest to the domain ends, and the d-point techniques. The classical
rectangular plate problem [7] is a fourth order boundary-value PDE with two boundary
conditions at each end of its four boundaries. The forced vibration of beams is a PDE of the
fourth order in the spatial dimension and the second order in the time dimension. Independent
variables for these two problems are different. The explicit weighting coefficients are derived for
an easy and accurate implementation.

In the GDQR, one needs some discernment in the discovery of the number of the equations at a
point in multiple-dimensional problems. The classical rectangular plate has one, two and three
equations at inner, boundary line and corner points, respectively [7]. The forced vibration of
beams has one and two equations at inner and boundary line points, respectively. For the four
corner points as shown in Fig. 1, the two points at the initial line have three equations and three
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Table 2

Analytical displacements and corresponding relative errors for the Euler beam

t1 t3 t5 t7 t9 t11

Analytical values of displacements

X2 �10.269 �12.610 �6.6302 7.5054 3.2406 0.084448

X3 �34.759 �42.684 �22.443 25.406 10.969 0.28585

X4 �49.157 �60.364 �31.740 35.929 15.513 0.40426

Corresponding relative errors (%)

X2 0.00337 0.00253 0.00022 0.00234 �0.00079 �0.03876

X3 0.00288 0.00203 �0.00028 0.00184 �0.00128 �0.03914

X4 0.00241 0.00157 �0.00074 0.00138 �0.00173 �0.03948
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independent variables, while the two points at the time-domain end have only two equations and
two independent variables. Failing to find the number of the equations and thus the proper
independent variables will not achieve the anticipated results. The principle about the choice of
independent variables is formularized here, so is the procedure for the derivation of weighting
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Table 3

Analytical bending moments and corresponding relative errors for the Euler beam

t1 t3 t5 t7 t9 t11

Analytical values of bending moments (� 108)

X2 0.48367 0.59394 0.31230 �0.35352 �0.15264 �0.0039777

X3 1.6372 2.0105 1.0571 �1.1967 �0.51668 �0.013465

X4 2.3155 2.8434 1.4951 �1.6924 �0.73072 �0.019042

Corresponding relative errors (%)

X2 0.00725 0.00640 0.00407 0.00622 0.00301 �0.03629

X3 0.00442 0.00358 0.00126 0.00339 0.00024 �0.03807

X4 0.00108 0.00024 �0.00206 0.00005 �0.00303 �0.04033

Table 4

Analytical displacements and corresponding relative errors for the Timoshenko beam

t1 t3 t5 t7 t9 t11

Analytical values of displacements

X2 �14.019 �13.567 �3.1762 7.7598 2.6291 0.065174

X3 �47.454 �45.925 �10.751 26.267 8.8994 0.22061

X4 �67.110 �64.948 �15.205 37.147 12.586 0.31199

Corresponding relative errors (%)

X2 0.00182 0.00133 �0.00194 0.00147 �0.00043 �0.03729

X3 0.00134 0.00081 �0.00243 0.00097 �0.00005 �0.00744

X4 0.00090 0.00032 �0.00290 0.00050 �0.00050 �0.00753

Table 5

Analytical bending moments and corresponding relative errors for the Timoshenko beam

t1 t3 t5 t7 t9 t11

Analytical values of bending moments (� 108)

X2 0.66032 0.63905 0.14960 �0.36550 �0.12383 �0.0030699

X3 2.2352 2.1632 0.50641 �1.2372 �0.41919 �0.010392

X4 3.1612 3.0594 0.71620 �1.7498 �0.59284 �0.014696

Corresponding relative errors (%)

X2 0.00545 0.00550 0.00194 0.00542 0.00409 �0.00748

X3 0.00280 0.00246 �0.00088 0.00254 0.00142 �0.00737

X4 0.00134 �0.00111 �0.00423 �0.00086 �0.00175 �0.00740
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coefficients. From the formulation of the GDQR proposed here and in paper [7] for classical
rectangular plates, an application of the GDQR to other high order initial–boundary�value
problems can be expected. The GDQR provides a way to directly implement the multiple given
conditions and thus holds a great potential to much more practical problems.
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